A Study of the Asymptotic Holonomic Efficiency Problem
نویسندگان
چکیده
In this paper we study an asymptotic version of the holonomic efficiency problem originated in the study of swimming microorganism. Given a horizontal distribution on a vector bundle, the holonomy of a loop in the base space is the displacement along the fiber direction of the end points of its horizontal lift. The holonomic efficiency problem is to find the most efficient loop in the base space in terms of gaining holonomy, where the cost of the base loop is measured by a subriemannian metric, and the holonomy gained is compared using a test function. We introduce the notions of rank and asymptotic holonomy, and characterize them through the series expansions of holonomy as a function of the loop scale. In the rank two case we prove that for convex test functions the most efficient base loops are simple circles, and solve these loops for linear and norm test functions. In the higher rank case the analytical solutions are outlined for some special instances of the problem. An example of a turning linked-mass system is worked out in detail to illustrate the results.
منابع مشابه
A Study of Asymptotic Holonomic Efficiency Problem∗
Abstract. In this paper we study an asymptotic version of the holonomic efficiency problem originated in the study of swimming microorganism. Given a horizontal distribution on a vector bundle, the holonomy of a loop in the base space is the displacement along the fiber direction of the end points of its horizontal lift. The holonomic efficiency problem is to find the most efficient loop in the...
متن کاملThe Asymptotic Form of Eigenvalues for a Class of Sturm-Liouville Problem with One Simple Turning Point
The purpose of this paper is to study the higher order asymptotic distributions of the eigenvalues associated with a class of Sturm-Liouville problem with equation of the form w??=(?2f(x)?R(x)) (1), on [a,b, where ? is a real parameter and f(x) is a real valued function in C2(a,b which has a single zero (so called turning point) at point 0x=x and R(x) is a continuously differentiable function. ...
متن کاملAsymptotic distributions of Neumann problem for Sturm-Liouville equation
In this paper we apply the Homotopy perturbation method to derive the higher-order asymptotic distribution of the eigenvalues and eigenfunctions associated with the linear real second order equation of Sturm-liouville type on $[0,pi]$ with Neumann conditions $(y'(0)=y'(pi)=0)$ where $q$ is a real-valued Sign-indefinite number of $C^{1}[0,pi]$ and $lambda$ is a real parameter.
متن کاملA study of a Stefan problem governed with space–time fractional derivatives
This paper presents a fractional mathematical model of a one-dimensional phase-change problem (Stefan problem) with a variable latent-heat (a power function of position). This model includes space–time fractional derivatives in the Caputo sense and time-dependent surface-heat flux. An approximate solution of this model is obtained by using the optimal homotopy asymptotic method to find the solu...
متن کاملOn the determination of asymptotic formula of the nodal points for the Sturm-Liouville equation with one turning point
In this paper, the asymptotic representation of the corresponding eigenfunctions of the eigenvalues has been investigated. Furthermore, we obtain the zeros of eigenfunctions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Control and Optimization
دوره 48 شماره
صفحات -
تاریخ انتشار 2009